The 2015 Surge of Hispar Glacier in the Karakoram
نویسندگان
چکیده
The Karakoram mountain range is well known for its numerous surge-type glaciers of which several have recently surged or are still doing so. Analysis of multi-temporal satellite images and digital elevation models have revealed impressive details about the related changes (e.g., in glacier length, surface elevation and flow velocities) and considerably expanded the database of known surge-type glaciers. One glacier that has so far only been reported as impacted by surging tributaries, rather than surging itself, is the 50 km long main trunk of Hispar Glacier in the Hunza catchment. We here present the evolution of flow velocities and surface features from its 2015/16 surge as revealed from a dense time series of SAR and optical images along with an analysis of historic satellite images. We observed maximum flow velocities of up to 14 m d−1 (5 km a−1) in spring 2015, sudden drops in summer velocities, a second increase in winter 2015/16 and a total advance of the surge front of about 6 km. During a few months the surge front velocity was much higher (about 90 m d−1) than the maximum flow velocity. We assume that one of its northern tributary glaciers, Yutmaru, initiated the surge at the end of summer 2014 and that the variability in flow velocities was driven by changes in the basal hydrologic regime (Alaska-type surge). We further provide evidence that Hispar Glacier has surged before (around 1960) over a distance of about 10 km so that it can also be regarded as a surge-type glacier.
منابع مشابه
A surge of North Gasherbrum Glacier, Karakoram, China
Between 2003 and 2007, North Gasherbrum Glacier on the northeastern slope of the Karakoram mountains in Asia underwent a dramatic acceleration, during which a velocity wave propagated down the glacier. There was a significant transfer of ice from up-glacier downstream, which resulted in a strong surface elevation increase over the lower tongue, but only a moderate advance of the glacier snout. ...
متن کاملSlight mass gain of Karakoram glaciers in the early twenty-first century
Assessments of the state of health of Hindu-Kush–Karakoram– Himalaya glaciers and their contribution to regional hydrology and global sea-level rise suffer from a severe lack of observations1. The globally averaged mass balance of glaciers and ice caps is negative1–3. An anomalous gain of mass has been suggested for the Karakoram glaciers2,4–6, but was not confirmed by recent estimates of mass ...
متن کاملBrief Communication: Contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya
We present glacier thickness changes over the entire Pamir–Karakoram–Himalaya arc based on ICESat satellite altimetry data for 2003–2008. We highlight the importance of C-band penetration for studies based on the SRTM elevation model. This penetration seems to be of potentially larger magnitude and variability than previously assumed. The most negative rate of region-wide glacier elevation chan...
متن کاملRepeat optical satellite images reveal widespread and long term decrease in land-terminating glacier speeds
By matching of repeat optical satellite images it is now possible to investigate glacier dynamics within large regions of the world and also between regions to improve knowledge about glacier dynamics in space and time. In this study we investigate whether the negative glacier mass balance seen over large parts of the world has caused the glaciers to change their speeds. The studied regions are...
متن کاملSlight glacier mass loss in the Karakoram region during the 1970s to 2000 revealed by KH-9 images and SRTM DEM
An anomalously slight glacier mass gain during 2000 to the 2010s has recently been reported in the Karakoram region. However, to date, no investigations of the region-wide glacier mass balance in the Karakoram prior to 2000 have been reported, leaving a knowledge gap for assessing glacier responses to climate change. We calculated elevation and mass change using DEMs generated from KH-9 images ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017